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Abstract. The properties of ether in a Mac Cullagh gauge are analyzed. 

Precisely, we present the Maxwellian theory of light from a purely classical point 

of view, having natural ties with the constitutive laws of classical ether. As a 

consequence, the fundamental assumptions of the modern theory of nuclear 

matter can receive a natural philosophical status. In particular, we note that the 

properties of light are correlated with the properties of space, which is another 

way to say that we cannot see the space but through light. Moreover, our model 

allows us to analyze the properties of the electromagnetic field as a gauge field 

proper, giving us the unique opportunity of a sound natural philosophy along the 

classical lines. 
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1. Introduction 

 

The Maxwellian theory of light presents it as a continuous space-time 

phenomenon. Only afterward has it been inferred that the electromagnetic 

theory of light should be a gauge theory. Here this theory is presented from a 

purely classical point of view, having natural ties with the constitutive laws of 

classical ether. It turns out to be very illustrative, mostly regarding the precise 

place and description of the gauge freedom introduced by the constitutive laws. 

Many of the fundamental assumptions of the modern theory of nuclear 

matter can thus receive a natural philosophical status. In particular it is quite 

interesting that the properties of light are correlated with the properties of space, 

which is another way to say that we cannot see the space but through light. 

 

2. Deformations and Tensions in a Natural Association 

 

If we work under the only assumption that the stresses and deformations 

are to be represented by 3×3 matrices, then the constitutive equation connecting 

them can be taken as a natural starting point in the physical characterization of a 

continuum, even without assuming any potential function. As a matter of fact, 

this may be a good possibility to circumvent this unclear concept, because it 

might not even have a physical meaning for all the problems of continuum. The 

theory to be presented now seems to be of a great importance, not only 

concerning classical well known concepts, but mostly because it shows clearly 

what is the real difference between a gauge angle, so much in use today in the 

theory of skyrmions, and an angle proper as we know it from geometry. In 

hindsight it also connects Fresnel‟s theory of light with the modern Yang-Mills 

gauge theory, in a historical continuity through ones of the most important 

reference points of the electromagnetic theory of light. 

Let us start by considering the theory of the constitutive laws (Mazilu 

and Agop, 2012; Agop and Mercheș, 2018) in its utmost generality, i.e. with no 

deformation potential, but only with the idea of distinctiveness of the matter in 

deformation. A constitutive law relating the stress and strain, must be a priori of 

the form 

 2

210
ppp xxey      (1) 

where e is the unit 3×3 matrix. We can really call this equation a natural 

constitutive law, if not on the grounds that it appears frequently in Nature, at the 

very least due to the fact that it can be derived from natural considerations on 

our representation of stresses and strains. Indeed, if our models of stress and 

strain are 3×3 matrices, and if the constitutive law is to be analytic, the Eq. (1) 

must be automatically in effect. For, then, the relation between the two matrices 

can be represented by a formal series reducible to a second order polynomial by 
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means of the Hamilton-Cayley theorem. By the very same token, that relation 

can be written just as well with the places of stress and strain matrices 

interchanged. Thus, strain as a function of stress is also a quadratic function, 

only with some other coefficients. 

Now, a deeper insight in the problem of deformation in general shows a 

specific physical feature of it: one has to deal here with uncontrollable 

manifestations, which must be somehow reflected in the relation between stress 

and strain. This is quite obvious in the different attempts of descriptions of the 

plastic deformation of matter along the time (see, for instance, Hill, 1998, 

chapter one and, especially, two). In the particular case of nuclear matter, we 

can describe those uncontrollable manifestations starting from the observation 

that the nucleus moves freely through the ether. This is actually the essential 

characteristic of any kind of matter, if the ether exists: it moves freely through 

it. Insofar as it should be considered matter, the nucleus is therefore no 

exception, and this fact should be properly taken into consideration. 

Nevertheless, because the physical space occupied by nucleus is most certainly 

out of the reach of any of our senses, even assisted by technology as it were, we 

can hope, first that the assumption of continuity of nuclear matter is closer to 

truth there than in any other place, and secondly that the surface of the nucleus, 

regardless of its details, is the last frontier between matter and space. 

There is a clear distinction between ether and matter here, not always 

taken properly into consideration, and the nuclear matter might help in 

clarifying the issue. Specifically, the ether is not matter, in the first place, so it 

shouldn‟t be treated by the theoretical means we use to treat the matter. 

Secondly, one can say that, by its very nature, the ether „pervades‟ matter, 

which is another way to say that the matter has structures only in ether. 

Inasmuch as we are concerned with the ether as a category in itself, these very 

properties differentiate between two kinds of ether: ether in space and ether in 

matter (Larmor, 1900). It is in this last sense, of „content‟ of matter, that we 

need to understand the above statement that „ether pervades matter‟. This notion 

will be made clear here, as we go on. 

 Extending this conclusion even to the limits where we cannot discern in 

any way a structure in matter, we can say that the matter is made of ether, but 

not vice versa: the ether is not a matter structure, as usually considered in 

classical physical analyses. Moreover, we can also say that the ether in matter 

and the ether in space are two species of the very same continuum, having 

however quite different physical and theoretical (mostly speculative) properties. 

And these properties are indeed reflected in the natural constitutive law above, 

originating from the representation of the stresses and strains. Let us see how. 

In the constitutive law given by Eq. (1), the material it characterizes has 

a precise identity, given by the coefficients p0, p1, p2. These should be 

accessible, in a certain way, to experiment. Finding these coefficients is what 

one actually means by „material characterization‟ in the contemporary 
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engineering practice. This practice consists of a set of standard experiments, 

specifically designed with the purpose to extract from them the material 

properties. In this particular case, the experiments should offer the coefficients 

p0, p1, p2. Often times in the actual practice these coefficients are considered 

pure material properties, but this restriction confuses the issues, sometimes with 

serious consequences. Let us make this statement a little more explicit, in order 

to use it properly here. 

No matter what the material properties are, the whole philosophy of 

their experimental origin hangs on the constitutive law, in our case the Eq. (1). 

Referring now the discussion to that equation, one can say that in each and 

every one of the experiments – the so-called loading experiments – with a 

material described by that equation, the principal directions of stress coincide 

with the principal directions of strain. On the other hand, if y1,2,3 are the 

principal values (eigenvalues) of stress matrix, and x1,2,3 are the principal values 

the strain matrix, according to the constitutive law (1) we must have satisfied 

the system of three equations with three unknowns – the material parameters: 

 3,2,1k;xpxppy 2

k2k10k


 

(2) 

Assume now that we are able to perform such experiments allowing us to 

measureall three principal values of strain and stress simultaneously. In 

practice, this is an impossible task, but let us assume it though, just for the sake 

of argument. The outcome of these experiments – the values x1,2,3 and y1,2,3 – 

will then allow us to algebraically calculate the material properties embodied in 

the coefficients p0,1,2 from the system (2). This system has a nontrivial unique 

solution if, and only if, the determinant 
 

 

)xx)(xx)(xx(

xx1

xx1

xx1

211332

2

33

2

22

2

11

  (3) 

 

is non-null. Thus, the material parameters p0, p1, p2 are uniquely determined, 

regardless of the character of imposed stress, by the solutions of the system (2) 

if, and only if, the resulting principal deformations are all different from one 

another. 

However unique, and thus well suited for characterizing the material by 

its individuality in constitutive behavior, the coefficients thus obtained are by 

no means pure material properties, inasmuch as they depend on the impressed 

state of stress, and this one is accidental, to say the least. Therefore we are 

further required to state more precisely what we understand by pure material 

properties. This is, and indeed always was, an issue for the theory of 

constitutive laws. This issue cannot be addressed but by explicitly accepting the 

uncontrollability as an essential trait of the process of deformation. 
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Notice indeed that, in the practical science of materials there are 

deformations even in cases where there are no impressed stresses acting on our 

material, for instance in the relaxation and creep processes. In those cases 

something uncontrollable goes on inside matter, that changes its perceived 

properties, especially the shape. Inasmuch as we don‟t know their origin, 

because there is no apparent cause of them, these deformations are indeed some 

intrinsic properties of the material. They might be generated by forces of whose 

presence we have momentarily no idea, or else they can be true intrinsic 

properties that we still can model as stresses – the so-called internal stresses – 

having in fact the physical meaning of energy densities. Limiting, when it 

comes to description of ether, the mechanics only to external or impressed 

forces, leaves no alternative but to consider these energy densities as intrinsic 

properties of the continuum. In terms of the system (2) they can be described 

somehow by the system of equations: 

 

2

32310

2

22210

2

12110

xpxpp0

xpxpp0

xpxpp0







 (4) 

This system states that there are deformations of the material under no 

external stress. In this case, the material characterization by experiment is 

transferred into finding the solutions of this homogeneous linear system, in case 

they exist. Like in the regular engineering practice, the material properties are 

the coefficients p0,1,2, measured in special conditions. These solutions always 

exist, we only have to decide just how many, and this depends on what we 

really can always measure. If we always measure three different deformations in 

three orthogonal directions in space, then this kind of matter is not responsive to 

the impressed stresses: all the material coefficients are necessarily zero. 

However, there are also possibilities of solutions in which the matter may be 

responsive to stresses, in other words its deformation is indeed accompanied by 

stresses. These are therefore characterized by nontrivial solutions of the system 

(3). Thus if we measure one and the same strain value in any direction in space, 

we have a double infinity of states of stress of such matter, depending on two 

material parameters. If we can measure two strain values, and only two, in a 

direction and its perpendicular plane for instance, then we have states of stress 

of the matter depending on one material parameter. Granting that we can 

include one of the material parameters into a measurable quantity, we can 

therefore nontrivially characterize a material exhibiting strain under no obvious 

stress. The most general constitutive law satisfied by such a material under a 

given general state of stress is 
 

 )x)(x(K
21
exexy   (5) 
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where K is an arbitrary constant having the dimensions of a stress, and e is the 

identity matrix. Such a material has three own uncontrollable characteristic 

quantities, of which only two are directly measurable. 

In closing here, notice that as long as we are interested in just the 

measurable quantities, a convenient way to express a characteristic deformation 

matrix for a material exhibiting uncontrollable strains, is in the form of the 

tensor 

 3,2,1j,i;mm)xx(xx
ji21ij2ij

  (6) 

where m̂  is a unit eigenvector, corresponding to the eigenvalue x1. Such a 

material has distinguished directional properties with respect to the direction 

m̂ , and these properties are given by the eigenvalues x1 and x2. As a matter of 

fact, the Eq. (6) does contain both of the previous two cases of measurement as 

particulars, if we agree to characterize the intrinsic material properties as 

deformations. Notice that this is an assumption independent of the constitutive 

description and must be secured by our measurement capabilities in special 

cases. Thus we have this general conclusion: whenever a material has the 

capability of deforming freely, i.e. under the action of no noticeable stresses, its 

deformation matrix must be of the form given by Eq. (6), all the particular cases 

included. This is plainly the case of the ether of space, opposing no resistance to 

matter moving through it, where the deformations, as well as the stresses 

associated „naturally‟ with them, are then manifestly tensors. 

By the same token we can discuss that category of continuum capable 

of sustaining stresses and exhibit no strain. It is indeed by this essential property 

– the rigidity – that matter comes first to our senses. For this the converse 

constitutive law must be taken into consideration, namely 

 2

210
qqq yyex   (7) 

This time, however, y may be only abusively called stress; let us just say that it 

is a tensor representing the internal energy density in matter. Then the defining 

state of such a continuum will be characterized by the system of equations 

 

2

32310

2

22210

2

12110

yqyqq0

yqyqq0

yqyqq0







 (8) 

corresponding to no strain response. Again, the material characterization 

depends on the number of solutions of this system. And just like before the most 

general strain it exhibits is of the form 
 

 )y)(y(K
21

1

1
eyeyx  

 (9) 
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where the constant K1 has, again, dimensions of a stress. It is perhaps of some 

significance to recall that the relation (9) with y1 + y2 = 0 has been found by 

Bell (1968; 1973) to be, by and large, a characteristic for metals: they always 

struck our senses by their hardness. Besides, the Eq. (9) seems to come up with 

a specific „quantization‟ discovered by Bell, which seems to be universal. 

Again, as long as we are interested in just measurable quantities 

characterizing such a material, its distinctive stress tensor assumes the following 

convenient representation, similar to (6) 

 3,2,1j,i;nn)yy(yy
ji21ij2ij

  (10) 

where n̂  is a unit vector corresponding to the eigenvalue y1. One can say that 

the general characteristic of materials exhibiting no strain under stress is of the 

form (9), all the particular cases included. 

Two points need to be clarified here. The first one regards the tensors 

from Eqs. (6) and (10). These equations are specific for matrices that we would 

like to term here as „equivalent‟ to a vector field. We understand this 

equivalence in the following way: let v


 be a vector field, and let us construct 

the following matrix 

 
jiijij

vvv   (11) 

It is clear that, because vk are the components of a vector, and supposing that α 

and  β are scalars, this gives vij as the components of a tensor indeed. One of the 

principal values of this tensor, namely α, is double. The other principal value, 

different from α, is given by 

 2v  (12) 

Notice some interesting features of this kind of tensor. First of all, if either one 

of β and vk is null, v is a purely spherical tensor. Secondly, if we calculate the 

eigenvector of v, corresponding to the eigenvalue (12), we find out that this 

eigenvector is v


, up to a normalization factor. This property is independent of 

the parameter α, and this is actually what we mean by the above-mentioned 

equivalence: given the vector v


 we can directly construct the tensor v as a 

family of two-parameter tensor matrices having it as an eigenvector. One can 

say that v represents a kind of action that points in the „general direction‟ of v


, 

however not exactly in that direction. This is what we understand by „equivalent 

to a vector field. 

Secondly, we feel compelled to elaborate a little on the very concept of 

measurement here. Inasmuch as we ideally follow one or the other kind of 

materials described above, the measurements means measurement of either 

strains or stresses in the specific conditions in which Eqs. (4) or (8) are valid. 

Practically, however, this is not the case: for a real material those conditions are 
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seldom satisfied. Besides the technological necessities push for immediate 

results, and we cannot wait for creep or relaxation results, which might take 

ages to get. Thus, practically, a measurement means in fact a curve-fit. We 

perform uniaxial experiments with a piece of material; this gives a privileged 

direction. Then we simply fit the results to a quadratic form, and from this we 

extract, for instance, the numbers K, x1, x2, from Eq. (5). Here we are entitled to 

say that only x1 and x2 are measurable because they can be referred to an ideal 

experimental setup. 

 

3. The Classical Ether as a Deforming Medium 

 

In order to convey what we think is the right meaning to some historical 

facts, we need to recall that the algebraic representation of a second order tensor 

is a quadratic form having the space form of a quadric (ellipsoid, hyperboloid or 

paraboloid). This was actually the classical way of description of light to 

Huygens and Fresnel (Huygens, 1690; Fresnel, 1827; Whittaker, 1910, Volume 

I, mainly chapter IV). The light was then seen as ether in extension. It is only 

afterwards that it was characterized as a perturbation propagating in space. 

Therefore it was important, for the genius of a geometer such as Huygens for 

instance, to characterize the space form of extension, i.e. the form of the wave 

as we say nowadays. It was a sphere or an ellipsoid of revolution, and these are 

quadratic forms associated with tensors like that given in Eq. (11). Indeed, in 

cases where the quadratic form associated to a second order tensor is positively 

defined, its space representation is always an ellipsoid whose semiaxes are 

given by the principal values of the tensor. It is clear that a spherical tensor – 

i.e. for β = 0 in Eq. (11) – represents a sphere, while the complete tensor (11) 

itself represents an ellipsoid of revolution (spheroid). This is the way Huygens 

characterized the propagation of light in vacuum, and the phenomenon of 

double refraction in transparent matter. In our terms here one might say indeed 

that Huygens just noticed that the ether entering the structure of matter is 

characterized by a tensor like (11). One may say further that, in depicting the 

double refraction, Huygens considered both cases, β zero and nonzero, separately, 

thus theoretically accounting for this strange phenomenon. It was the merit of 

Fresnel to notice that a single space form as related to the general tensor (11) is 

quite sufficient in order to characterize the double refraction. In doing this he just 

noticed the important fact, taken for granted nowadays, that the thing we are after 

in such a construction is actually the eigenvalue of the tensor representing the 

ellipsoid, because it is in relation with the speed of light. And, according to the 

classical principles, it is the speed of light that changes in the phenomenon of 

refraction. Only, it has later been noticed, this change is not done according to the 

rules of classical dynamics, which are mainly vector rules. 

Speaking of this moment in Fresnel‟s thinking, and ours for that matter, 

let us notice here a fact that we find to be of special importance for what has 
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followed afterwards, especially for the prototype of the nonabelian gauge 

theories, the Yang-Mills theory. Namely replacing the Huygens‟ double 

construction – sphere and spheroid – by a single general construction – spheroid 

– carries over into space forms the mark of a certain property of linearity of the 

tensors from the family given by Eq. (11): the linear combination of any 

number of tensors „belonging‟ to a vector is always a tensor of the same family, 

i.e. it belongs to the same vector. It is indeed this property that allowed Fresnel 

to see that in the general case, of crystals having two axes of double refraction, 

the right description is that by a quadratic form representing not a spheroid but a 

general ellipsoid (Whittaker, 1910). Relegating the reader to historical works 

already indicated, we try here a more limited task, namely to answer the 

question: what would have happened if Fresnel would continue his logic, based 

however upon the existence of two kinds of tensors (11) one related to the ether 

in space the other related to ether in matter? 

This question comes out of the simple observation that the ether in 

space does not oppose any resistance to the motion of matter, i.e. it has no 

stresses under the obviously nontrivial deformation induced by the motion of 

the bodies. On the other hand, while in matter, the ether has the property of 

impenetrability, i.e. it exhibits nontrivial stresses under no deformation. Within 

the limits of the theory presented above, this philosophy could have been 

materialized even from the times of Fresnel, by the proposal of James Mac 

Cullagh (Mac Cullagh, 1831) for the representation of the light phenomenon 

according to Newtonian view of forces. Let us briefly see what Mac Cullagh‟s 

philosophy is about. 

Mac Cullagh was concerned with the elliptically polarized light, like the 

light passing through rock crystals. He found that this can be represented by two 

harmonic vector processes in the same plane, like the ones invented by Fresnel, 

making a certain angle between them. Later on (Mac Cullagh, 1836) he noticed 

that the theory can be put in a space-time form by a system of coupled 

differential equations, which led him to the foundations of the theory of ether 

(Mac Cullagh, 1839) – later improved by Lord Kelvin and Larmor – and finally 

to an exquisite explanation of the phenomenon of double refraction in quartz 

(Mac Cullagh, 1840). It is to be noticed that the veiled compelling argument of 

Mac Cullagh seems to have been the faulty notion of displacement to Fresnel. 

Indeed, in the case of light – a continuum phenomenon – the mechanical 

displacement has no object, i.e. it is not referring to a material point, but simply 

to a position in space, apparently without matter, as we know it, located there. 

This very fact made Newton‟s natural philosophy hardly relevant to the light, a 

detail corrected in a brilliant way by Mac Cullagh. These facts explain, by and 

large, the almost explicit contribution of Mac Cullagh to the future 

electromagnetic theory of light (Darrigol, 2002; Darrigol, 2010). In hindsight 

though, Mac Cullagh‟s seems to us to be more than an electromagnetic theory. 

It is indeed the very first specimen of a gauge theory, of the kind that came into 
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existence more than a century afterwards in the form of the Yang-Mills theory 

(Yang and Mills, 1954). 

 

4. Witten’s Ansatz: Instantons from Skyrmions or Vice Versa 

 

The simplest way to get the characterization of ether inside a biaxially 

refringent crystal for instance, is by letting enter the play the fact that there 

exists ether in space and also ether in matter. And we do this in a special 

manner, which we venture to call Witten ansatz, because it has intimate ties 

with the known gauge solutions put forward by this theoretician (Witten, 1977). 

Indeed, Witten‟s original work addresses the problem of possibility of 

constructing general solutions for the Yang-Mills gauge fields – the so-called 

instantons. These gauge fields appear to be, by what we just have shown here, 

and we‟ll continue to elaborate on, a natural generalization of the classical 

Maxwell stress theory to a connection of the space. Indeed, as long as we are 

talking of stress and strain, we are talking a fortiori of skyrmions first, and 

therefore, before talking of “skyrmions from instantons”, as it is nowadays the 

theoretical habit ever since the works of Atiyah and Manton (Atyiah and 

Manton, 1989; Atyiah and Manton,1993), we need first to talk of “instantons 

from skyrmions”, as it was historically the case. 

Here a Witten-type ansatz can be easily obtained for the fields only, by 

admitting that the ether is characterized not by a single tensor of the general 

type (11), but by two, therefore by two characteristic vectors, u


 and v


 say – 

like Mac Cullagh‟s vectors for instance. According to the logic just outlined 

above, the complete tensor describing the ether in general would then be, at 

least in a first instance, a linear combination of the two, something of the form: 

 jijiijij vvuuw   (13) 

With the classical electromagnetic theory in mind, we may need to notice that the 

calculations are more symmetrical if we write (13) in a more convenient form as 

 ijijij vuw   (14) 

where λ and μ are two real parameters, describing the degree of „space or 

matter‟ in the „constitution‟ of ether per se. Here the matrices u and v are 

defined by 
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2
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vvvv;uuuu
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2

1
vvv;u

2

1
uuu
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
 (15) 

 

This tensor contains eight measurable quantities: λ, μ, and the two 

„intrinsic‟ vectors. It represents a „linear structure‟, so to speak, of the ether. 

Indeed, as a category apart, according to Larmor‟s idea, the ether can be said to 
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exist in space as well as in matter, and this is reflected in Eq. (13). The form 

(14) of the tensor w is only a convenient way to express the same idea, whereby 

the tensors u and v characterize the two subcategories of ether. 

Written at length, the tensor (14) is 

 
ij

22
jijiij )vu(

2

1
vvuuw   (16) 

It is easy to see that it has three real eigenvalues. Indeed, its orthogonal 

invariants are 

 )ge(eI;geI;eI 22

3

22

21
  (17) 

where we denoted 

 
)vu(g;)vu(

2

1
e 22 

  (18) 

The eigenvalues of w can then be calculated as the roots of the corresponding 

characteristic equation, and they are 

 22

3,21
gew,ew   (19) 

It turns out that the pair from Eq. (18) gives one eigenvector of w and the 

corresponding eigenvalue. The other two eigenvectors of w are orthogonal, and 

located in the plane of the vectors u


 and v


. 

We can read on Eqs. (16) and (18) the classical form of the Maxwell 

stress tensor of an electromagnetic field in free space. Therefore the previous, 

„neo-fresnelian‟ as it were, Witten-type characterization of the ether actually 

coincides with the electromagnetic description of the light, which took shape 

some half-century after Fresnel and Mac Cullagh. However it tells us much 

more than the electromagnetism per se, as indeed the case should be. First of all, 

we can appreciate the fact that a characterization of the ether, as it comes out of 

light measurements, is a highly idealized situation, if we think it in terms of the 

electromagnetic theory. Indeed, this last theory is naturally connected with the 

idea of vector representing the electromagnetic field, deriving from the very 

same property of classical force. What one can actually measure in a point in 

space is an average of the influences of ether and matter, and it is this fact that 

has to be taken into consideration when talking, for instance, of the cosmic 

background radiation, or in any bolometric measurements for that matter. Thus, 

we don‟t measure averages of some vector fields, as the electromagnetic theory 

of light almost tacitly assumes, but rather averages related to a tensor field. This 

may largely explain why the Planck spectrum lets itself be exquisitely described 

by a Gaussian probability density of the frequency at a given temperature 

(Priest, 1919a; Priest, 1919b ). 
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Now, as long as we represent the structure of ether by a tensor, this one 

has two kinds of space averages attached to it in any space point: one of them is 

the average normal component the other is the average tangential component of 

the tensor in that point (Mazilu and Agop, 2012). Indeed, for every plane in 

space through a certain point, a tensor has two characteristic scalar intensities 

associated with it: the normal and in-plane (tangential, or shear) intensities. 

What we want to say is that the description of light involves statistics in the first 

place, and we cannot discuss the light experimentally but only based on 

statistical estimators: the experiment cannot give anything else. On the other 

hand, it is this very aspect of the physics of light that gave us the possibility to 

describe it electromagnetically. Nevertheless, one can see that, no matter how 

attractive when it comes to describing the behavior of light, this is only a 

particular case, involving experiments where the „property of linearity‟ in the 

behavior of ether is conspicuous. 

One of the most important consequences of this view is the fact that the 

characteristics of an electromagnetic field in vacuum are statistical, not 

geometrical properties, which is why they should be considered gauge fields in 

the first place. Historically, this was a subject of great debate that led to the 

actual science of ellipsometry, and further to the theory of coherence of light. In 

order to show its deep significance, let us explain here how a known 

geometrical property of electromagnetic field, namely the perpendicularity of 

electric and magnetic components of an electromagnetic wave in vacuum, 

comes out as a „statistical‟ property related to a gauge. It is worth, indeed, 

considering this issue a little closer, because it shows how a universal Huygens‟ 

principle, i.e. a Huygens principle according to Fresnelian view of the light, can 

be connected with the measurement of the electromagnetic field quantities. 

Consider, therefore, the tensor w, whose eigenvalues are given in Eqs. 

(19). Assume a local reference frame given by its eigenvectors. Then the 

corresponding vector associated to this matrix is 
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With Eqs. (19) the component of this vector perpendicular to the octahedral 

plane (Mazilu and Agop, 2012) is given by  
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nww
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On the other hand, the component of the vector (20) in the octahedral plane 

(shear component) is given by 
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Therefore the magnitude of this shear vector is 
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Now, in order to calculate the orientation of the vector (22) in the octahedral 

plane, we need to choose a reference direction in that plane. 

This choice brings us again over to the theory of deformations, the one 

that stays at the basis of Manton geometrization (Manton, 1987). Indeed, 

disregarding translations and rotations, a deformation maintaining the property 

of constant curvature of a three-dimensional Riemann space is formally given 

by a metric tensor like that from Eq. (11) above (Coll et al., 2002). The main 

property of this tensor, is that it closely represents our practice with 

deformations: the deformation tensor considered as a variation of the metric 

tensor, is always quadratic in the components of a vector which can deservedly 

be called stretch. This is, indeed, an essential characteristic of the classical 

theory of deformations, when they are theoretically explained as gradients and 

experimentally described by stretches. Then, for such a tensor we have (Mazilu 

and Agop, 2012) 
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If the stretch vector 


 is perpendicular on both u


and v


, i.e. it is in the 

direction of the eigenvector from Eq. (18), then the tensors w and h commute. 

Thus they have a common reference frame in any point, given by their 

eigenvectors, and so it can be arranged that their octahedral planes coincide. In 

this case the direction of the shear vector from Eq. (24), which is fixed, can be 

naturally chosen as a reference direction in the octahedral plane. Then the angle 

 of the vector (22) with respect to this fixed direction, is given by 

 

22 g3e4

e
cos 


  (25) 

This shows that, under the specified conditions, i.e. for deformation at constant 

curvature, the angle  is independent of the reference stretch vector 


, and 

depends only on the properties of the ether, as represented by the two vector 

fields u


and v


. This angle is therefore what we would like to call a gauge 
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angle. With a proper choice of sign for the square root, its origin,  = 0, occurs 

for e = g. This condition means, in turn, that the angle  between the vectors 

u


and v


 – a proper geometric angle this time, for it is the angle of two 

directions in space – is given by equation 

 

uv

vu

2

1
sin

22
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As the quantity from the right hand side here is always greater than or equal to 

1, the angle between vectors u


and v


 cannot be but 90. But this is the well 

known property of the electromagnetic theory of light in vacuum. 

 
5. Conclusions 

 

Let us therefore conclude that Fresnel‟s expression for Huygens‟ 

principle, as obtained from a Witten-type ansatz referring to two Mac Cullagh 

vectors, requires a certain characteristic of the tensor w representing the ether. 

Specifically, the gauge angle giving the orientation of the shear vector of ether 

in the local octahedral plane is given strictly by the vector fields entering the 

structure of tensor w. Now, it is to be naturally assumed that in the conditions of 

vacuum, the space deformation must be „aligned‟, so to speak, with the tensor 

w, in the manner needed in order to have a common local reference frame. They 

can be „misaligned‟ only in matter. In other words the matter makes its presence 

noticed by this very misalignment, which should be somehow reflected in the 

values of the gauge angle different from 0. Therefore only the ether in vacuum 

is characterized by Eq. (26) and thus by a 90 geometrical angle between the 

vectors u


and v


. This is a general characteristic of the electromagnetic fields 

in vacuum which, as shown here, is not a consequence of their vector character, 

but of the tensor character of the physical quantities involved in the 

measurement process. One can surely say, therefore, that it is a statistical 

property, and that inside matter it should be apparent in a specific way, 

somehow related though to the considerations above. 

At this point we have to stop a little, in order to offer one more 

argument to our philosophy of geometrical representation of nuclear matter. 

Certainly the Eq. (26) does not allow but only the value 1 for the sine of the 

geometrical angle between the two vectors. Therefore any value, other than zero 

of the gauge angle  is to be prohibited on this basis. One can, of course, argue 

that the electromagnetic theory is quite a particular approach for the problem of 

ether, and indeed this is the very case here: the ether we are talking about is that 

of vacuum. It is in matter that the gauge angle has to be nonzero, as we 

mentioned above, i.e. only in matter the value of the ratio from the right hand 

side of Eq. (25) is different from unity. In that case e has to be different from g, 
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and as the quantity from the right hand side of Eq. (26) is always greater than 

one in absolute value, the geometrical angle  between the two vectors u


and 

v


 has necessarily to be a complex angle. This is to say that the very geometry 

of the electromagnetic fields in matter is no more the usual Euclidean geometry, 

but rather a hyperbolic geometry for instance. Whence, once again, the 

argument that the hyperbolic geometry characterizes the nuclear space in the 

classical Kepler problem. This time, however, it comes out from the properties 

of the electromagnetic field as a gauge field proper. This should be the case of 

the gamma radiation of the nuclei, for example. Allowing, therefore, to Skyrme 

theory, the full freedom offered by Manton‟s geometrization, gives us the 

unique opportunity of a sound natural philosophy along the classical lines. 
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ETERUL ÎN TEORII DE ETALONARE DE TIP MAC CULLAGH 

 

(Rezumat) 

 

În prezenta lucrare se analizează proprietățile eterului într-o teorie de etalonare 

de tip Mac Cullagh. Mai precis, prezentăm teoria Maxwelliană a luminii din punct de 

vedere clasic, având conexiuni naturale cu legile constitutive ale eterului clasic. În 

consecință, ipotezelor fundamentale asupra teoriilor moderne ale materiei nucleare li se 

poate atribui un statut ca cel dat prin principiile matematice ale filozofiei natural 

dezvoltate de Newton. În particular, proprietățile luminii pot fi corelate cu proprietățile 

spațiului, altfel spus nu putem „percepe” spațiul decât prin lumină. Mai mult, modelul 

nostru ne permite să analizăm proprietățile câmpului electromagnetic ca un câmp 

natural de etalonare, oferindu-ne oportunitatea unică a unei filozofii natural argumentată 

în sens clasic. 


